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Abstract

This research report focuses on the identification and treatment of emerging
contaminants in wet weather flows. It contains extensive literature reviews on the topic
along with results from sample collections supporting the research. Investigations were
conducted at a wastewater treatment plant treating separate municipal wastewater that
received elevated flows during wet weather. Stormwater sheetflow samples were also
obtained in the area for pharmaceutical, PAH, trace metals, bacteria, and pesticide
analyses. Laboratory tests were also conducted investigating trace heavy metal
leachate sources during material exposures, and the survival and re-growth of indicator
bacteria in urban areas. The report also contains discussions on the treatability of these
pollutants using traditional and advanced stormwater control practices.

Municipal wastewater treatment plants have traditionally been designed to treat
conventional pollutants found in sanitary wastewaters. However, many synthetic
pollutants, such as pharmaceuticals and personal care products (PPCPs), also enter
the wastewater stream. Some of these nontraditional contaminants are not efficiently
removed by the treatment process at the wastewater treatment plant. Some of the
pharmaceuticals excreted from the human user’s body are metabolized and are more
toxic and untreatable than their parent compound. Emerging contaminants have been
referred to by EPA as “contaminants of emerging concern (CECs) because the risk to
human health and the environment associated with their presence, frequency of
occurrence, or source may not be known.”

In this EPA funded research, pharmaceuticals, PAHs and pesticides at the treatment
plants were examined. The study focused on the effects of stormwater infiltration and
inflow (1&I) into sanitary systems and the amounts and treatability of targeted
pharmaceuticals and other compounds. Dry and wet weather samples were obtained
from the city of Tuscaloosa’s wastewater treatment plant for analyses. Samples were
obtained from four locations within the treatment plant in order to determine if there are
significant differences between influent quantities and removal characteristics for the
different unit processes during periods of increased flows associated with wet weather
compared to normal flow periods. The data generally show that treatability appears to
remain similar during both wet and dry weather conditions under a wide range of flow
conditions.

Another objective of this research was to examine how different drainage system and
tank materials, water chemical characteristics, and exposure times affect trace heavy
metal losses. Static leaching tests for eight pipe and gutter materials were conducted
over two separate three month periods during which pipe and gutter test materials were
exposed to roof runoff and stormwater buffered to pH 5 and 8 and for exposure to
different salinity conditions. This research found that the metallic gutter and pipe
materials released significant amounts of heavy metals, with galvanized steel materials
being the most significant sources of lead and zinc, while copper materials were the
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most important source of copper (as expected). Zinc, copper, and lead releases were
detected during both short and long exposure times under low and high pH conditions
and low and high salinity conditions.

Because of difficulties in the measurements of water-borne pathogens, the
microbiological quality of stormwater runoff is often characterized on the basis of
bacterial indicator species. These are assumed to derive from a common (sewage)
source with pathogens of interest, and to arrive in, survive in, and move through
watershed environments in numbers that correlate with the health risk from those
pathogens. Commonly used indicator species (especially E. coli, and Enterococcus spp.
or Enterococci), however, may derive from sources other than sewage, and survive in
the (non-enteric) environment at rates different from those of the pathogens they are
presumed to indicate. The studied indicator organisms (especially Enterococci) were
found to be quite persistent (especially under environmental conditions that most closely
approximate enteric conditions) on impervious surfaces subject to the extreme
Tuscaloosa, AL environmental conditions. Moreover, under most conditions studied, the
rate of disappearance of these organisms from the landscape slowed (or even
reversed), rendering short term studies of their survival (or even the simple regression
of long term studies) unreliable in predicting their environmental fate.

Stormwater treatment is entering a new phase with stormwater management systems
being required to meet specific numeric objectives, as opposed to the historic approach
of meeting guidance-document-provided percent removal rates. Meeting numeric
discharge requirements will require stormwater managers to better understand and
apply the physical, chemical, and biological processes underpinning these treatment
technologies. This report concludes with a discussion of the treatability of these
compounds by conventional sedimentation and chemically active media that can be
used in biofilters or other stormwater treatment devices.
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Section 1. Executive Summary

This project and its many tasks had several inter-related activities focusing on source
identification and treatment of emerging contaminants in wet weather flows. The direct
goals and objectives of this project were to compile existing and related information
pertaining to these under-represented contaminants that may occur in wet weather
flows (such as separate stormwater and separate sewer overflows); to collect
characterization information of these contaminants from a selection of these flows; and
to evaluate these flows for their treatability using a variety of methods, including
literature reviews, chemical characteristics, water chemistry modeling, and field testing.
While much information exists in the literature pertaining to dry weather sewage
treatment, industrial wastewater treatment, and drinking water treatment of some
emerging contaminants, very little data are available concerning treatment of wet
weather flows or the characterization of these contaminants in wet weather flows.

We were fortunate in being able to supplement the project resources with additional
support for some of the graduate research assistants (and for the analytical costs) from
Alabama EPSCoR and industrial clients. These other projects, while not directly
involved in the original project tasks, allowed us to address several important elements
that had direct benefits to this project. These other data and results were integrated in
this project report and addressed several topics, including: survival and fate of
stormwater indicator bacteria on impervious surfaces; leaching of trace heavy metals
from different pipe materials and asphalts; and extensive testing of biofiltration media for
the treatment of a broad range of organic, radioactive, and metallic contaminants.
These supplemental projects have enabled us to greatly expand our originally planned
project efforts to address these additional issues pertaining to sources and treatment of
emerging and related contaminants.

Pharmaceuticals and Personal Care Product Characteristics in Wet
Weather Flows and their Treatability

The U.S. Environmental Protection Agency (USEPA) sets guidelines for pollutant
discharges from municipal and industrial treatment plants and for stormwater
discharges based on the National Pollutant Discharge Elimination System (NPDES).
These regulations mainly focus on discharges of conventional pollutants. However, new
classes of unregulated contaminants have become an emerging environmental problem
(Petrovic, et al. 2003). These pollutants have been found in waterways and in
groundwater. Pharmaceuticals were first reported in surface waters during the
investigation of U.S. waterways in the 1970s, although they are not regulated as legacy
pollutants such as are PCBs and DDTs (Snyder, et al. 2006).

Researchers, including Watts, et al. (1983), first reported the occurrence of several
selected antibiotics in river water samples. Since then, there have been many
investigations of antibiotics as well as publications documenting their presence in
groundwaters, surface waters, wastewaters and landfill leachates (Xu, et al. 2007).



The USEPA coordinated with the U.S. Geological Survey to compile a list of emerging
contaminants found in the U.S. waterways (A National Reconnaissance). Samples were
obtained from 139 U.S. streams and waterways to analyze ninety five organic
wastewater contaminants (Koplin, et al. 2002). These emerging contaminants are used
in large amounts in the US, yet many have no maximum concentration limits in
discharge permits. Research on several contaminants investigated during the
Reconnaissance Study is being conducted to quantify the potential effects of these
compounds on aquatic wildlife and the environment, such as work by Campbell (2006)
who conducted a study to investigate the effects of estrogen, an endocrine chemical
disruptor, on aquatic wildlife.

Emerging contaminants, as defined by the U.S. Geological Survey, are “any synthetic or
naturally occurring chemical or any microorganism that is not commonly monitored in
the environment but has the potential to enter the environment and cause known or
suspected adverse ecological and (or) human health effects.” The U.S. EPA describes
emerging contaminants by the statement: “chemicals are being discovered in water that
previously had not been detected or are being detected at levels that may be
significantly different than expected that may cause a risk to human health and the
environment.” The EPA refers to these pollutants as “contaminants of emerging
concern” (CECs).

Little is known about the effects of these compounds in the environment or how they are
transported into the environment. Researchers have studied how some pollutants affect
wildlife. Endocrine disrupting chemicals, a sub-category of emerging contaminants,
have caused sexual abnormalities in certain species of fish. Endocrine disrupting
chemicals include a broad range of chemicals: natural and synthetic estrogens,
pesticides and industrial chemicals (Campbell, et al. 2006). Low levels (ng/L) of
waterborne estrogens lead to adverse effects such as the feminization of fish, impaired
reproduction and abnormal sexual development (Sellin, et al. 2009).

Research on emerging contaminants has improved with new analytical methods that
quantify these contaminants in very small trace quantities, as some emerging
contaminants may cause adverse effects on the ecosystem even in small amounts.
Some studies have been conducted to examine the fate and transport of these
chemicals from their point (or non-point) sources to the environment and how to reduce
their discharge quantities. For instance, disposing unused medications via toilet flushing
may appear minor to consumers, but that activity could perhaps cause adverse
environmental effects in large communities. Additionally, many of the pharmaceuticals
used in human medical care are not completely transformed or absorbed in the human
body and are often excreted in only slightly transformed conjugated polar molecules
(e.g. as glucoronides) or even unchanged (Herberer 2002). Some of these conjugates
can pass through a wastewater treatment plant untreated and enter into the receiving
waters. Residuals of contaminants may leach into groundwater aquifers. Some of these
pollutants have been reported in ground and drinking water samples from water works



using bank filtration or artificial groundwater recharge downstream from municipal
sewage treatment plants (Herberer 2002).

Pharmaceuticals, personal care products and endocrine disruption chemicals are the
major categories of emerging contaminants. Polycyclic aromatic hydrocarbons (PAHS),
pesticides, heavy metals and microbes are classified as priority pollutants, and are also
discussed in this report due to their lack of general information in wet weather flows and
possibly similar treatment behavior as PPCPs. Pharmaceuticals enter the treatment
system either directly, or through fecal matter or urine (or by pet medication and
stormwater). Personal care products could possibly enter the treatment plant through
direct disposal or by shower or bath waters. Pesticides, PAHs, heavy metals and
microbial material can be brought to the treatment plant through urban runoff that
infiltrates the sewer lines or directly discharged to the sewers if a combined system.

Emerging contaminants are treated at variable rates at wastewater treatment facilities.
Recent studies have demonstrates wastewater treatment plant removals of personal
care products and pharmaceutical ranging between 60% and 90% for a variety of polar
compounds (Carballa, et al. 2004). The removal rate is mostly contingent on the
physical and chemical nature of the pollutant and the effects of the wastewater matrix. It
also depends on the treatment plant itself, such as the retention time through each unit
process and the specific unit processes used at the treatment facility (Mohapatra, et al.
2010). The effects of increased inflow rates and changes in influent concentrations
during rain events on the treatability of these compounds were investigated during this
study.

One of the purposes of this research was to quantify the effects of wet weather flows on
the performance of different unit processes in the removal of emerging contaminants
and to quantify the mass discharges to the wastewater treatment facility of the ECs. Wet
weather causes an increase in the amount of wastewater flowing to the treatment plant
due to inflow and infiltration of stormwater. This increased flow rate and possible
characteristic changes of the wastewater may affect EC treatment.

The objectives of this research included:

¢ Understand how emerging contaminants, such as pharmaceuticals, personal
care products, PAHs, and pesticides are eliminated by unit treatment processes
during variable flow conditions.

e Examine the range of the chemical characteristics of the contaminants and
confirm how they correspond to theoretical treatment potential based on actual
monitoring observations.

e Determine how the increased flow rates and mass loads of the emerging
contaminants during wet weather conditions affect their treatability.

e Determine the mass discharges of the ECs from the stormwater contributions to
the treatment facilities.



During this research, multiple dry and wet weather sample series were obtained at four
locations within the Hilliard N. Fletcher Wastewater Treatment plant. This treatment
plant serves the municipality of Tuscaloosa as well as some areas of Tuscaloosa
County, Alabama. Samples were obtained from the inlet, after the primary clarifier,
following secondary treatment, and after UV-disinfection at the plant final discharge.
These samples were analyzed and evaluated for selected ECs for comparison to
literature information, and to understand how they would respond to similar treatment
processes that are used for wet weather flows.

Many of the publications during the last two decades have reported the occurrences of
pharmaceuticals and personal care products in a wide variety of waters. Most of these
included municipal wastewater treatment influents and effluents, rivers, other surface
waters, and drinking waters. However, very little information is available addressing
these compounds in wet weather flows. Stormwater I&| can have a significant effect on
wastewater treatment flows (and pollutant concentrations) and may in turn potentially
affect treatment of wastewater pollutants. As an example, PAHs are more likely
associated with stormwater in urban areas than in separate dry weather sanitary
wastewater. Increases of PAHs in wastewater influent during wet weather suggest
stormwater is entering the sewer system. Pesticides are also of interest for this study
and are known pollutants associated with stormwater. Some pharmaceuticals have dual
roles in both human and veterinary medicine. While many would enter the sanitary
sewage system from human wastes, pet pharmaceuticals could enter the system
through stormwater contaminated by fecal matter from treated animals.

Samples were collected during a range of flow and rain conditions to understand
whether stormwater contributes ECs to the treatment plant. I&l are not likely significant
until the daily rain depth is greater than about one-half inch, when the treatment plant
flow can increase to greater than about 20 MGD. During the largest rain depth observed
(2.67 inches), the treatment plant flow was also the largest observed (42.2 MGD). Mass
loads were calculated based on the measured daily flow rates and the influent
concentrations. The mass loads for the dry weather days were compared to the wet
weather day mass loads. The differences were then related to the rain depth observed
for the day to determine if stormwater contribute to the EC discharges to the treatment
plant. Eight dry weather samples were taken in addition to nine wet weather samples at
four locations at the treatment facility. Some of the constituents did not have values for
some of the sample dates and in a few instances, insufficient sample volumes were
available to complete the full suite of analyses.

There are few obvious sources of PPCPs in wet weather flows (beyond some
associated with veterinarian drugs). However, regression analyses of influent
concentrations vs. treatment plant flow rate indicated significant slope terms for all of
the pharmaceutical compounds (increasing concentrations with increasing flow rates at
the treatment facility), except for carbamazepine. Table 1-1 summarizes the observed
concentrations during both low and high flow conditions. In general, the average
concentrations for peak flows were about double the dry weather period concentrations,
although there was substantial variability.



Table 1-1. Dry and Wet Weather Observed Pharmaceutical Concentrations at Tuscaloosa Wastewater

Treatment Plant

Average dry weather Average wet weather
concentrations (at about | concentrations (at
18 MGD at treatment about 40 MGD at
plant) treatment plant)
Gemfibrozil, ug/L 55 110
Ibuprofen, ug/L 35 60
Triclosan, pg/L 35 60
Carbamazepine, ug/L 8 15
Fluoxetine, ug/L 45 100
Sulfamethoxazole, ug/L 50 100
Trimethoprim, ug/L 12 25

The samples obtained at the influent at the Tuscaloosa Wastewater Treatment Plant
were also analyzed for selected PAHs. The PAH concentrations all had statistically
significant increasing concentrations with increasing daily average flow rates (except for
acenapthtylene), although there were generally wide variations in concentrations
observed. In general, the average concentrations for peak flows were also about double
the dry weather period concentrations, although there was also substantial variability for
the PAHSs, as shown on Table 1-2.

Table 1-2. Dry and Wet Weather Observed PAH Concentrations at Tuscaloosa Wastewater Treatment
Plant

Average dry weather
concentrations (at about
18 MGD at treatment

Average wet weather
concentrations (at
about 40 MGD at

plant) treatment plant)
Naphthalene, pg/L 10 20
Acenaphthene, ug/L 6 12
Fluorene, pg/L 1 2
Fluoranthene, ug/L 0.8 2
Phenanthrene, ug/L 2 4
Anthracene, ug/L 1 2
Pyrene, pg/L 1 2

Table 1-3 shows the significant slope terms for the analyzed pharmaceuticals and
PAHSs, reflecting the increasing concentrations as the daily average wastewater
treatment plant flow increased during different sized rains. These slope terms were
used to calculate approximate influent concentrations for these increasing flows, and
the loads, expressed as mg/km? for each rain category.



Table 1-3. Calculated Influent Mass Loadings for Pharmaceuticals during Different Sized Rain Events

Pharmaceutical Slope term Conc. Mass per | Conc. Mass per | Conc. Mass per
compound (Mg/L/IMGD) | (ug/L) event (Mg/L) event (ng/L) event

during O to | (mg/km?®)* | during 0.6 | (mg/km?)* | during 1.6 | (mg /km?)*

0.5inch to 1.5 inch to 2.5inch

rain (18 rain (23 rain (34

MGD; 1.5 MGD:; 4 hr MGD; 12 hr

hr duration) duration) duration)
Gemfibrozil 2.81 51 1.1 65 4.9 96 32
Ibuprofen 1.85 33 0.74 43 3.2 63 21
Triclosan 1.86 34 0.74 43 3.2 63 21
Fluoxetine 2.44 44 0.97 56 4.2 83 28
Sulfamethoxazole 2.51 45 1.00 58 44 85 29
Trimethoprim 0.66 12 0.26 15 1.2 22 7.5

* 74 mi® (192 km?) service area

Table 1-4 summarizes some of the reported influent pharmaceutical concentrations at
wastewater treatment plants as reported in the literature compared to the
concentrations observed at the influent at the Tuscaloosa wastewater treatment plant
during this study. The gemfibrozil and ibuprofen values are within the range previously
reported, but the triclosan, sulfamethoxazole, and trimethoprim observed concentrations
seem larger than typically reported (by about one order of magnitude). However, the
laboratory QA/QC results, including frequent testing of internal and external standards
and extraction efficiencies, indicated that the results are acceptable. Most of the
methods used during the reported studies in the literature were advanced procedures
that had very low detection limits, while our methods used more basic HPLC units, and
we used specially developed solid-phase extraction methods for enhanced recoveries.
Our detection limits were suitable, but relatively close to the observed values.
Therefore, the pharmaceutical concentrations reported during this project may have
greater uncertainly than many of the reported sources. However, the analyses of the
treatment results reported in the next section show consistent results and expected
behavior, with similar values for the influent and after primary treatment, and most of the
removals occurring during the secondary treatment phase, resulting in much lower
effluent concentrations. Some compounds did not show any significant removals, so the
repeated results helped establish the analytical performance. Table 1-5 is a similar
calculation of influent mass loadings for PAHSs.

Table 1-4. Observed Influent Pharmaceutical Concentrations Compared to Reported Concentrations

Pharmaceutical Concentrations reported for Influent concentrations
compound influents at wastewater observed during this study
treatment plants (ug/L) (average pg/L)

Gemfibrozil 0.110 36 59
Ibuprofen 4to 84 28
Triclosan 09to4 28
Sulfamethoxazole 0.05t0 1.5 38
Trimethoprim 0.05t0 1.5 9




Table 1-5. Calculated Influent Mass Loadings for PAHs during Different Sized Rain Events

PAH Slope term Conc. Mass per | Conc. Mass per | Conc. Mass per
compound (Mg/L/IMGD) | (ug/L) event (Mg/L) event (ng/L) event
during 0 to | (mg/km?)* | during 0.6 | (mg/km®)* | during 1.6 | (mg/mi
0.5inch to 1.5inch to 2.5inch | and
rain (18 rain (23 rain (34 mg/km?)*
MGD) MGD) MGD)
Naphthalene 0.5 9.0 0.20 11.5 0.87 17.0 5.7
Acenaphthene 0.31 5.6 0.12 7.1 0.54 10.5 3.5
Fluorene 0.057 1.0 0.02 1.3 0.10 1.9 0.65
Fluoranthene 0.047 0.8 0.02 1.1 0.08 1.6 0.54
Phenanthrene 0.11 2.0 0.04 2.5 0.19 3.7 1.3
Anthracene 0.055 1.0 0.02 1.3 0.10 1.9 0.63
Pyrene 0.059 1.1 0.02 1.4 0.10 2.0 0.67

* 74 mi* (192 km?) service area

Table 1-6 compares the observed influent PAH concentrations during this study with
some reported PAH values from the literature. The concentrations reported in the
wastewater literature are again much lower than observed during this research. During

our prior PAH studies in wet weather flows (Pitt, et al. 1999, for example). We have

commonly seen even higher PAH concentrations in separate stormwater. We suspect

the main differences are associated with the extraction methods. The use of solid-phase
extraction methods for PAHs in the presence of particulates results in very low
recoveries. More effective extraction methods use multiple extractions with separation
funnels instead, as used during this study. Most of the PAHs are strongly associated

with particulates which are difficult to extract by some methods. For groundwater
samples, where little of the PAHs are associated with particulates and the particulate

content in the samples is very low, so solid phase extraction can work well; for surface
water samples (and wastewater samples), the particulate matter significantly interferes
with PAH extractions using solid-phase extraction methods.

Table 1-6. Observed Influent PAH Concentrations Compared to Reported Concentrations

PAH compound Concentrations Influent
reported for influents at | concentrations
wastewater treatment observed during
plants (range pg/L) this study (average
ug/L)
Naphthalene 01to7 11
Acenaphthene 0.02t0 0.4 11
Fluorene 0.04 t0o 0.7 5
Fluoranthene 0.1t00.2 5
Phenanthrene 0.3t02 3
Anthracene 0.03 t0 0.1 75
Pyrene 0.1t00.5 5




Treatment of Pharmaceuticals and PAHs

Tables 1-7 and 1-8 summarize the chemical characteristics and their treatability as
reported in the literature review for the emerging contaminants examined during this
research. These tables shows the most likely means of removal, the reported ranges of
influent and effluent concentrations, and the ranges of the percentage removals for
each constituent.

The pharmaceuticals gemfibrozil, ibuprofen, triclosan and fluoxetine were reported to be
best reduced by biodegradation (secondary treatment). The overall range of influent
concentrations ranged from 0.3 to 14.6 ug/L. The removals for these compounds varied.
Ibuprofen showed the highest level of treatability ranging from 82 to 95 percent.
Triclosan had reduction rates of 75 percent and gemfibrozil had a reduction range from
38 to 76 percent.

Carbamazepine had the lowest reported reduction rates of zero to 30 percent. .
Carbamazepine is difficult to treat, as it is resistant to biodegradation. Because
carbamazepine is soluble in water, it is also not treatable by sedimentation in the
primary unit processes. Carbamazepine concentration increases in the effluent
compared to the influent were observed. Possible treatment mechanisms of
carbamazepine are not clearly understood.

Sulfamethoxazole is highly soluble in water and therefore difficult to remove.
Photodegradation removes sulfamethoxazole at some treatment facilities. The reported
influent concentrations ranged from 0.25 to 0.35 ug/L, and the effluent concentrations
ranged from 0.11 to 0.23 ug/L. The reduction rates of sulfamethoxazole ranged from 17
to 66 percent.

Low molecular weight (LMW) PAHs (naphthalene, acenaphthene, acenaphthylene,
fluorene, phenanthrene, and anthracene) had reported reduction rates between 31 and
91 percent. Naphathlene had the lowest reduction rates ranging from 31 to 40 percent.
Naphthalene has a Henry’'s Law constant of 0.019 atm-m>/mol, making it more volatile
than the other PAHs and more likely to volatize during wastewater treatment.
Acenaphthene, acenaphthylene, fluorene, phenanthrene and anthracene have Henry’s
Law constants of about 107, and their solubilities range from 0.045 to 16.1 mg/L.
Volatization and oxidation were the primary means of reported treatment for PAHs
having lower molecular weights. High molecular weight (HMW) PAH compounds (such
as pyrene, fluoranthene, chrysene, and benzo(a)pyrene) had higher reduction
percentages ranging from 83 to 91 percent. Adsorption is a primary removal factor for
the HMW compounds. Influent concentrations for LMW PAHs ranged from 0.016 to 7.3
Mg/L, and effluent concentrations ranged from 0.002 to 0.7 pg/L. Influent concentrations
for the HMW PAHSs ranged from 0.044 to 0.47 ug/L, and effluent concentrations ranged
from 0.013 to 0.06 ug/L.



Table 1-7. Summary of Characteristics and Treatability of Targeted Pollutants

Constituent Log Kow | Solubility pka Biodegradation | Toxicity
(mg/L) half-life * **rate
Pharmaceuticals

Gemfibrozil 4.78 5.0 4.7 1.5 hours EC 50 D. Magna
22.85 mg/L

Ibuprofen 3.5-4.0 415 4.9 2 hours EC 50 Daphnia.
108 mg/L

Triclosan 4.8-5.4 2-4.6 7.8 125 hours IC 50 P.
subcapitata. 1.4
pg/L

Carbamazepine 2.25 17.7 13.9 10-20 hours LC 50 D. magna
>100 mg/L

Fluoxetine 4.05 38.4 9.5 24-72 hours LC 50 P.
subcapitata 24
pg/L

Sulfamethoxazole 0.9 600 5.7 10 hours IC 50 P.
subcapitata. 1.5
mg/L

Trimethoprim 0.79 400 6.8 8-10 hours IC 50 P.
subcapitata. 80.3
to 130 mg/L




Table 1-7. Summary of Characteristics and Treatability of Targeted Pollutants

(continued)

Polycyclic Aromatic | Log kow | Solubility Volatility Biodegradation | Toxicity
Hydrocarbons rate
Napthalene 3.37 31.7 46x10" | 0.8-43days LC 50
Pimephales
promelas 7.76
mg/L
Acenaphthene 4.02 1.93 7.91x10° | 1-25 days LC 50 Salmo
gairdneri 1570
Hg/L
Fluorene 412 1.68-1.98 1.0x10"* 2-64 days EC 50 V. fischeri
4.10 pg/mL
Fluoranthene 5.14 0.20-0.26 6.5 x 10-° 880 days EC 50 S.
capricornutum
54,400 pg/L
Acenaphthylene 3.89 3.93 1.5x10° 21-121 days Did not find
Phenanthrene 4.48 1.20 2.56x 10° | 19 days ; 35-37 Did not find
days;
Anthracene 4.53 0.0076 1.77 x10® 108-139 days EC 50 D.magna
211 ug/L;
Pyrene 5.12 0.0.077 43x10" 34 to 90 weeks EC 50 D.magna
(Dabestani 67000 pg/L
and Ivanov
1999, 10-34)
Benzo(a) anthracene | 5.61-5.71 | 0.0016-0.011 | n/a n/a n/a
and chrysene
Benzo(b) n/a n/a n/a
fluoranthene, Benzo(k)
fluoranthene,
Benzo(a) pyrene, and
indeno(1,2,3,cd)
pryene
Benzo(a,h) n/a n/a n/a

anthracene and
Benzo(g,h,i) perlene

10




Table 1-7. Summary of Characteristics and Treatability of Targeted Pollutants

(continued)

Pesticides Log kow solubility Reported most Biodegradation | Toxicity
important rate
treatment method

Methoxychlor 4.68-5.08 0.1 Adsorption/ 7 to 29 days D. magna EC 50=1800
biodegradation pg/L

Aldrin 6.5 0.027 Adsorption/ 20-100 days Salmo gairdneri LC 50
biodegradation 2.6 pyg/L

Dieldrin 6.2 0.1 Adsorption/ None found Salmo gairdneri LC 50
biodegradation 1.2 ug/L

Chlordane ~5.54 insoluble* Adsorption/ 60 days Chironomus plummosus
biodegradation LC 50 10 pg/L

Arochlor 5.6-6.8 insoluble* Adsorption/ Variable. P. subcapitata
biodegradation Depends on 182nmol/L

chlorination of
compound

Lindane 3.8 17 Adsorption/ 69.41 hours D. magna EC 50=1.64
biodegradation mg/L

Heptachlor 6.10 0.056 Adsorption/ 6 months-3.5 S. capricornutum LC 50
biodegradation years 26.7 ug/L

Heptachlor- 5.40 not found Adsorption/ None found; None found

epoxide biodegradation metabolite

4.68-5.08 0.1 Adsorption/

biodegradation
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Table 1-8. Summary of Characteristics and Treatability of Targeted Pollutants

Reported most Range of Range of Range of
Constituent important treatment influent effluent removal at
method concentration concentration conventional
(ng/L) (ng/L) wastewater
treatment
facility
Gemfibrozil Biodegradation 1.5-3.5 0.4-0.8 38%-76%
Ibuprofen Biodegradation 0.45-15 0.02-2.0 82%-95%
Triclosan Biodegradation 0.38-1.9 0.11-0.22 60%-75%
Carbamazepine Not widely known due | 0.13-1.9 0.12-1.6 0%-30%
to increase in effluent
Fluoxetine Biodegradation
Sulfamethoxazole Adsorption (minor), 0.25-0.35 0.11-0.23 17%-66%
photodegradation
Trimethoprim Chlorination (UV was 0.10-0.45 0.10-0.11 70%-75%
not effective) Batt et al
Reported most Range of Range effluent | Range of
important treatment influent concentration removal at
method concentration (ng/L) conventional
(ng/L) wastewater
treatment
facility
Napthalene Volatization/oxidation 0.147-7.3 0.088-0.7 31%-40%
Acenaphthene Oxidation/Sorption 0.016-0.7 0.005-0.11 67%-85%
Fluorene Oxidation/sorption 0.037-0.7 0.015-0.23 59%-68%
Fluoranthene Sorption 0.15-0.24 0.02-0.03 86%-88%
Acenaphthylene Oxidation/sorption 0.021 0.002 91%
Phenanthrene Oxidation/sorption 0.333-1.7 0.11-0.2 67%-89%
Anthracene Oxidation/sorption 0.028-0.09 0.007-0.012 75%-87%
Pyrene Adsorption 0.14-0.47 0.023-0.06 83%-88%
Benzo(a) anthracene | Adsorption 0.21 0.019 91%
and chrysene
Benzo(b) Adsorption 0.42 0.076 82%
fluoranthene, Benzo(k)
fluoranthene, Benzo(a)
pyrene, and
indeno(1,2,3,cd)
pryene
Benzo(a,h) anthracene | Adsorption 0.044 0.013 71%
and Benzo(g,h,i)
perlene
Heptachlor n/a n/a n/a n/a
Heptachlor-epoxide n/a n/a n/a n/a
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Observed Treatment of PPCPs at the Tuscaloosa Wastewater Treatment Plant
Table 1-9 summarizes the average concentrations obtained at each of the four sampling
locations at the Tuscaloosa Earl N. Hilliard (ENH) wastewater treatment plant and
indications of the likely most important unit treatment process. The pharmaceuticals
have low to moderate removals (about 50%) while the PAHs show larger removals

(about 90%), although the observed removals varied substantially for different

compounds in each constituent group. A combination of unit treatment processes
resulted in the best pharmaceuticals and PAH reductions, as expected.

Table 1-9. Performance Data for Earl Hilliard WWTP, Tuscaloosa, AL

Constituent Avg Avg Primary Avg Avg Avg Overall Apparent most
Influent effluent conc. Secondary | concentration | Percentage Important
conc. (ng/L) effluent after UV (final | Removal at treatment unit
(ug/L) conc. effluent) ENH process

(ng/L) (ng/L) wastewater
treatment
facility
Pharmaceuticals
Gemfibrozil (w) 324 31.7 18.1 17.1 45 Secondary
Gemfibrozil (d) 80.3 23.4 22.3 18.6 71 Primary
Ibuprofen (w) 21.6 21.0 17.6 9.6 58 uv
Ibuprofen (d) 44.7 35.3 20.8 15.3 67 Secondary
Triclosan (w) 33.9 16.9 15.0 12.3 63 Primary
Triclosan (d) 16.7 3.3 12.9 04 98 uv
Carbamazepine (w) 24 5.0 5.0 2.6 -8 uv
Carbamazepine (d) 15.9 10.5 2.5 1.4 94 Primary
Fluoxetine (w) 14.1 41.7 3.3 1.9 86 Secondary
Fluoxetine (d) 61.7 36.8 11.6 9.6 84 Secondary
Sulfamethoxazole (w) | 10.4 18.4 14.1 13.1 -33 None
Sulfamethoxazole (d) | 68.7 42.6 31.1 244 65 Secondary
Trimethoprim (w) 3.1 3.1 3.9 2.0 33 uv
Trimethoprim (d) 16.3 28.3 211 21.0 -31 None
Polycyclic Aromatic
Hydrocarbons
Naphthalene (w) 15.3 4.7 25 22.7 -47 None
Naphthalene (d) 71 11.1 3.8 1.3 82 Secondary
Acenaphthene (w) 16.9 5.1 0.4 0.6 96 Primary
Acenaphthene (d) 7.7 0.8 0.1 0.02 99 Primary
Fluorene (w) 10.3 1.0 0.6 0.6 9N Primary
Fluorene (d) 0.7 1.2 0.04 0.05 93 Secondary
Fluoranthene (w) 10.3 4.2 0.5 0.5 95 Primary
Fluoranthene (d) 0.3 0.5 0.02 0.04 87 Secondary
Acenaphthylene (w)
10.5 0.6 0.6 0.7 92 Pr