
Stormwater Infiltration Controls Included in WinSLAMM Bioretention/biofiltration areas Rain gardens Porous pavement Grass swales and grass filters Infiltration basins Infiltration trenches Green (and blue) roofs Disconnections of paved areas and roofs from the drainage system Also considers evapotranspiration and "SEA" (Street Edge Alternative) Street, Seattle, WA stormwater beneficial uses

1

4

Runoff from Pervious/impervious area Reducing runoff velocity

Reducing runoff velocity

Reduced volume and treated runoff

Infiltration

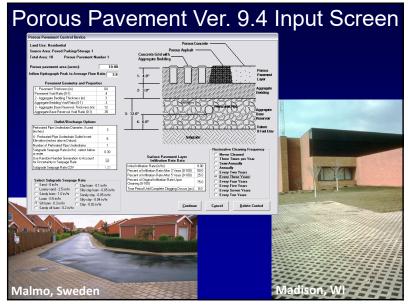
Reduced volume and treated runoff

5

Particulate Removal Calculations For each time step -Calculate flow velocity, settling velocity and flow depth • Determine flow depth to grass height, for particulate reduction for each particle size increment using Nara & Pitt research Check particle size group limits ➤ Not exceed irreducible concentration value by particle size Scour adjustment by > Flow velocity > Impervious area

Porous Pavement

Use for walkways and overflow parking areas, and service roads (alleys); not used in areas of material storage or for extensive parking or traffic to minimize groundwater contamination potential.


Zurich

Essen, Germany

Singapore

8

7

Groundwater Contamination Potential when using Infiltration in Urban Areas

Recommendations to Reduce

- Infiltration devices should not be used in most industrial areas without adequate pretreatment.
- Runoff from critical source areas (mostly in commercial areas) need to receive adequate pretreatment prior to infiltration.
- Runoff from residential areas (the largest component of urban runoff in most cities) is generally the least polluted and should be considered for infiltration.

10

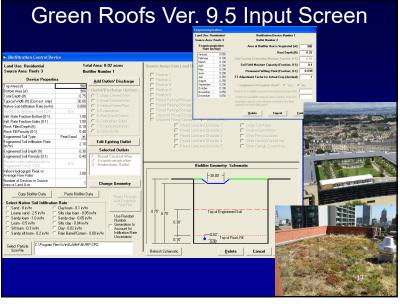
12

10

9

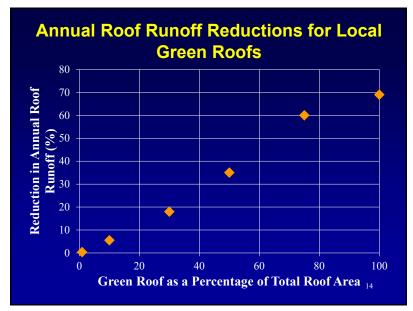
Modeling Findings for Porous Pavements in Central Alabama Area

- Soils having at least 2.5 mm/hr infiltration rates can totally remove the runoff from porous pavement areas, assuming about 10 cm coarse rock storage layer. Porous pavement areas can effectively contribute zero runoff, if well maintained.
- However, slow infiltrating soils can result in slow drainage times of several days. Soils having infiltration rates of at least 12 mm/hr can drain the pavement structure and storage area within a day, a generally accepted goal.
- These porous pavements can totally reduce the runoff during the intense 2-year rains (about 4.2 inches in depth).
- Good design and construction practice is necessary to prolong the life of the porous pavements, including restricting runon, prohibiting dirt and debris tracking, and suitable intensive cleaning.

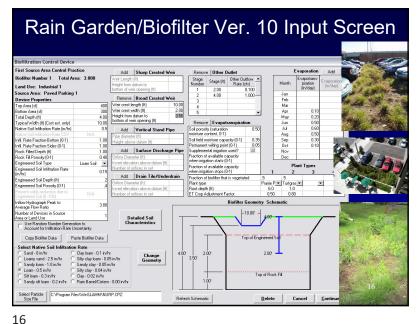

Green Roofs

- Green roofs can contribute to energy savings in operation of a building, can prolong the life of the roof structure, and can reduce the amount of roof runoff.
- They can be costly. However, they may be one of the few options for stormwater volume control in ultra urban areas where ground level options are not available.
- Irrigation of the plants is likely necessary to prevent wilting and death during dry periods.

12


11

_

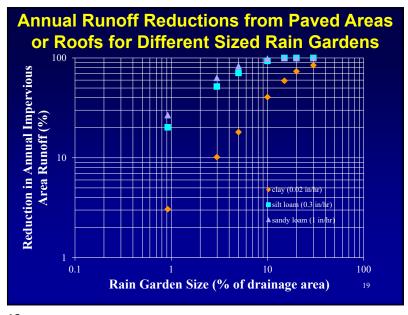


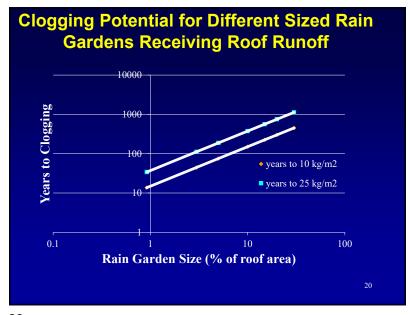
Rain Gardens for Roof and Paved **Area Runoff**

- · Simple rain gardens without extensive excavations or underdrains can be used near buildings for the control of roof runoff, or can be placed in or around the edges of parking areas for the control of runoff from parking areas.
- Rain gardens provide greater groundwater contamination protection compared to porous pavements as the engineered soil fill material should contain significant organic material that hinders migration of many stormwater pollutants. This material also provides much better control of fine sediment found in the stormwater.
- Rain gardens can be sized to control large fractions of the runoff, but maintenance to prevent clogging and to remove contaminated soils is also necessary.

14

Runoff


Overflow


Drainage

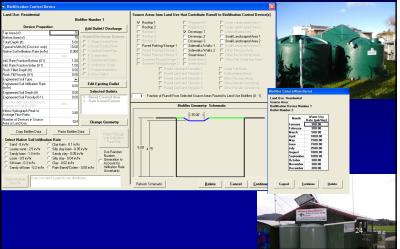
Orifice Flow

Recharge

17

19

Results from Modeling Local Birmingham Rain Gardens


- Local rain gardens should be located in areas having soil infiltration rates of at least 8 mm/hr. Lower rates result in very large and much less effective rain gardens, and the likely clay content of the soil likely will result in premature clogging.
- Rain gardens should be from 5 to 10 percent of the drainage area to provide significant runoff reductions (75+%).
- Rain gardens of this size will result in about 40 to 60% reductions in runoff volume from a large 100 mm rain. Rain gardens would need to be about 20% of the drainage area in order to approach complete control of these large rains.

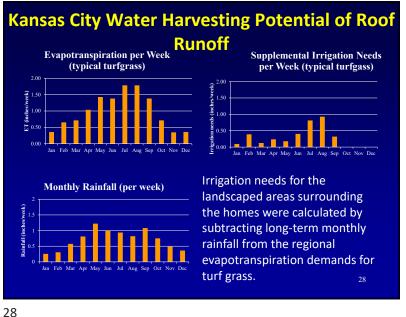
Rain Garden Results (cont.)

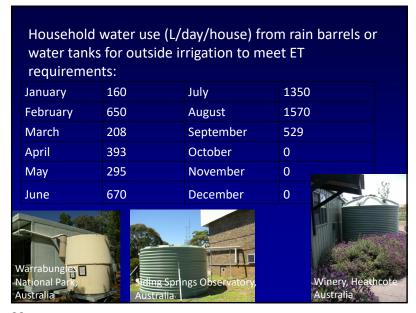
- · Clogging of the rain garden may occur from particulates entering the device, or from clay in the engineered soil mix.
- Roof runoff contains relatively little particulate matter and rain gardens at least 1% of the roof area are not likely to clog (estimated 20 to 50 years).
- · Paved area runoff contains a much greater amount of particulate matter and would need to be at least 10% of the paved area to have an extended life (>10 years).

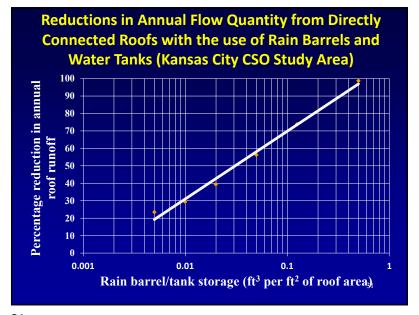
22

Water Tank/Cistern/Rain Barrel Beneficial Use of Stormwater Ver. 9.5 Input Screen

Evapotranspiration (ET) data sources are from agricultural and wildland environments which differ greatly from urban settings. The few projects that have examined urban ET values indicate large differences. Therefore, further research applying the available ET rates to disturbed urban environments is required to confirm the applicability of these rates in urban stormwater management practices.


Evapotranspiration (ET) as a Major Factor in Calculating Irrigation Needs Beverly Hills, California **ET Comparison** jan feb mar apr may jun jul aug sep oct nov dec k values **Observed Site** Estimated Assessed Conditions Coefficient Category Species .9*/.95 cool season grasses High Factor Density 0.75 Low density Low Factor groundcover Microclimate Shaded with wind Low 0.65 protection $K_L = k_S * k_d * k_{mc}$.43*/.46 *Slight reduction in species factor to account for early spring


25


	Example Irrigation Needs Calculated for Silty Soil- East Coast Conditions Calculated using continuous simulations and long-term rain records									
			Irrigation deficit (ET							
			minus soil moisture addition from rain)	irrigation deficit						
		·	•	(gal/day/house)						
Jan	0	3.44	n/a	0						
Feb	0	2.67	n/a	0						
Mar	2.79	3.67	n/a	0						
Apr	4.20	3.38	0.82	102						
May	4.96	4.16	0.80	96						
Jun	5.10	3.18	1.92	240						
Jul	5.27	4.36	0.92	109						
Aug	4.65	3.44	1.21	140						
Sep	3.90	3.84	0.06	7						
Oct	3.10	3.00	0.11	13						
Nov	1.80	3.79	n/a	27 0						
Dec	1.24	3.35	n/a	0						

			can Var ces, Esp	•			•						369	. <i>y</i>	40	411 404 383	37941 8 385	47 35 119 416	417 8394 382	359	
of ET ca ne	f var T val an be eeds	iou lue: e u: s fo	nt WERF reads is ET datables for many sed to estimate the stormware as have la	ases: regio mate ter be	sho ns the	in in e ir	ing the riga ial	mo U: atio	ont S th on es.	hly nat	,		240 275 164 241 257 298	237 198	274 274 2 281	229 7283	100			3	
(s	uch	as	CA and FL) arse for oth	, whi				ta i	is				.40	150292	254 12 191232 22	37291 ₂ : 289 19 22 170 11	246 268 289 289 272		15	(s ¹⁴ , ¹	2
(s	uch	as	CA and FL)	, whi		tior				ı Equ	ation	ı (19	82) (I	50 ²⁸² (264 12 191 232 27 27 day	772912: 289 19 22 70 11	246 68 268 289 199 272		.15	· 14,1	2
(s m	ore	as spa	CA and FL) arse for oth	, whi		tior	ns.		nmai	Jun	Jul	Aug	5.0		264 12 191 232 22 24 day	72912: 289 19 22 70 11	246 68 268 289 1199 272	5 5 10 120	15	\$14.1	Ž Jimes 389
(s m	uch	as spa	CA and FL) arse for oth	, whi	cat	Ki	ns.	ly Pe	nmai May Una	Jun vailable		Aug	5.0		aay-	72912: 289 19 22 70 11		0 120	15	14. ¹	2 itrous 360
(s m	Long	as spa	CA and FL) arse for oth Station Name Fairbanks Alaska	, whi	cat	Ki	ns.	ly Pe	nmai May Una Una	Jun vailable vailable	Jul at this t	Aug time time	5.0		aay-	72912: 289 19 22 70 11		50 120	15	314,1 0 S00	2
Lat 64.84 61.08	Long -147.62 -149.73	as spa Elev	CA and FL) arse for oth Station Name Fairbanks Alaska Rabbit Creek Alaska	, whi	cat	Ki	ns.	ly Pe	nmai May Una Una	Jun vailable vailable	Jul at this t	Aug time time	5.0		aay-	72912: 288 19 22 70 11		30 120	15	14, ¹	1870es 369
Lat 64.84 61.08 57.8	Long -147.62 -149.73 -135.13 -86.081 -87.171	as spa Elev 454 1480 450	CA and FL) arse for oth Station Name Fairbanks Alaska Rabbit Creek Alaska Hoorsh Alaska	, whi	Jan	Kii Feb	ns. mber	ly Pe	nmar May Una Una Una	Jun vailable vailable vailable	Jul at this t at this t at this t	Aug time time	Steprin	anGebirn	GNEOWN			i	15	14, ¹	2
Lat 64.84 61.08 57.8 33.44 32.96 34.14	Long -147.62 -149.73 -135.13 -86.081 -87.171 -87.362	Elev 454 1480 450 600 363 804	CA and FL) arse for oth Station Name Fairbanks Alaska Rabbit Creek Alaska Hoorah Alaska Josamulgee Alabama Oakmulgee Alabama Bankhead Alabama	, whi	Jan 0.07 0.08 0.06	Ki: Feb 0.13 0.09 0.12	Mar 0.18 0.13 0.17	Apr 0.24 0.20 0.24	May Una Una Una 0.26 0.22	Jun vailable vailable vailable 0.26 0.25 0.26	Jul at this t at this t 0.25 0.24 0.25	Aug time time time 0.24 0.22 0.25	0.23 0.21 0.23	0.21 0.17 0.20	0.13 0.13 0.13	0.09 0.08 0.09		5 5 10 120	150 20	14,1 0 S00	2 it/des 360
Lat 64.84 61.08 57.8 33.44 32.96 34.14 32.45	Long -147.62 -149.73 -135.13 -86.081 -87.171 -87.362 -85.641	Elev 454 1480 450 600 363 804 283	CA and FL) arse for oth Station Name Fairbanks Alaska Rabbit Creek Alaska Hoorash Alaska Talladega Alabama Oskimulgee Alabama Bankhead Alabama Bankhead Alabama	years of Data	Jan 0.07 0.08 0.06 0.08	Ki: Feb	Mar 0.18 0.13 0.17 0.17	0.24 0.20 0.24 0.24	May Una Una Una 0.26 0.22 0.25 0.26	Jun vailable vailable 0.26 0.25 0.26 0.27	Jul at this t at this t 0.25 0.24 0.25 0.27	Aug time time time 0.24 0.22 0.25	0.23 0.21 0.23 0.23	0.21 0.17 0.20 0.19	0.13 0.13 0.13 0.13	0.09 0.08 0.09 0.07		5 120 120	150 20	14,1 0 S00	1M0es 360
Lat 64.84 61.08 57.8 33.44 32.96 34.14 32.45 34.76	Long -147.62 -149.73 -135.13 -86.081 -87.171 -87.362 -85.641 -90.722	Elev 454 1480 600 363 804 283 253	CA and FL) arse for oth Station Name Fairbanks Alaska Rabbit Creek Alaska Haddama Odkmingee Alabama Odkmingee Alabama Tuskegee Alabama Tuskegee Alabama Tuskegee Alabama	years of Data	Jan 0.07 0.08 0.06 0.08 0.06	Kii Feb 0.13 0.09 0.12 0.13 0.07	0.18 0.13 0.17 0.17	0.24 0.20 0.24 0.24 0.18	May Una Una 0.26 0.22 0.25 0.26 0.21	Jun vailable vailable 0.26 0.25 0.26 0.27	Jul at this t at this t 0.25 0.24 0.25 0.27	Aug time time 0.24 0.22 0.25 0.25	0.23 0.21 0.23 0.23 0.20	0.21 0.17 0.20 0.19	0.13 0.13 0.13 0.13 0.13	0.09 0.08 0.09 0.07		5 120 120	150 20	14,1	
(S M 64.84 61.08 57.8 33.44 32.96 34.14 32.45 34.76 34.27	Long -147.62 -149.73 -135.13 -85.641 -87.362 -85.641 -90.722 -92.393	AS SP6 SP6 SP6 454 1480 600 363 804 283 253 270	CA and FL) Station Name Fairbanks Alaska Rabbit Creek Alaska Hoonsh Alaska Talladega Alabama Banifeada Alabama Banifeada Alabama Marianna Arkansas Sheridan Arkansas	years of Data	Jan 0.07 0.08 0.06 0.08 0.06 0.07	Kiii Feb 0.13 0.09 0.12 0.13 0.07 0.12	0.18 0.13 0.17 0.17 0.13 0.19	0.24 0.20 0.24 0.24 0.18 0.08	May Una Una 0.26 0.22 0.25 0.26 0.21	Jun vailable vailable 0.26 0.25 0.26 0.27 0.27	Jul at this t at this t 0.25 0.24 0.25 0.27 0.26 0.20	Aug time time 0.24 0.22 0.25 0.25 0.25	0.23 0.21 0.23 0.23 0.20 0.28	0.21 0.17 0.20 0.19 0.16 0.21	0.13 0.13 0.13 0.13 0.11 0.15	0.09 0.08 0.09 0.07 0.06 0.08		5 129	150 20	14 1 0 S00	iMass
Lat 64.84 61.08 57.8 33.44 32.96 34.14 32.45 34.76 34.27 36.07	Long -147.62 -149.73 -135.13 -85.081 -87.171 -87.362 -85.641 -90.722 -92.393 -93.357	454 1480 450 600 363 804 283 253 270 2365	CA and FL) arse for oth Station Name Fairbanks Alakka Rabbit Creek Alaska Hoonah Alaska Taldega Alabama Tuskegee Alabama Tuskegee Alabama Mariaman Arkamass Sheridan Arkamass Sheridan Arkamass	years of Data	Jan 0.07 0.08 0.06 0.08 0.06 0.07 0.06	Feb 0.13 0.09 0.12 0.13 0.07 0.12 0.10	0.18 0.13 0.17 0.17 0.13 0.19 0.15	0.24 0.20 0.24 0.24 0.18 0.08 0.21	May Una Una 0.26 0.22 0.25 0.26 0.21 0.32	Jun vailable vailable 0.26 0.25 0.26 0.27 0.27 0.31	Jul at this t at this t 0.25 0.24 0.25 0.27 0.26 0.20 0.35	Aug time time 0.24 0.22 0.25 0.25 0.25 0.30	0.23 0.21 0.23 0.23 0.20 0.28 0.24	0.21 0.17 0.20 0.19 0.16 0.21 0.22	0.13 0.13 0.13 0.13 0.11 0.15	0.09 0.08 0.09 0.07 0.06 0.08		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	150 24	14.1 0 S00	
Lat 64.84 61.08 57.8 33.44 32.96 34.14 32.45 34.76 34.27 36.07 35.87	Long -147.62 -149.73 -135.13 -86.081 -87.171 -87.362 -85.641 -90.722 -92.393 -93.357 -94.297	AS SP6 454 1480 450 600 363 804 283 270 2365 1633	CA and FL) arse for oth Station Name Fairbanks Alaska Rabbit Creek Alaska Hoosain Alaska Barkheed Alabama Barkheed Alabama Marianna Arkansas Compton Arkansas Compton Arkansas	Years of Data	Jan 0.07 0.08 0.06 0.08 0.06 0.07 0.06 0.06	Feb 0.13 0.09 0.12 0.13 0.07 0.12 0.10 0.07	0.18 0.13 0.17 0.17 0.13 0.19 0.15 0.12	0.24 0.20 0.24 0.24 0.18 0.08 0.21 0.16	May Una Una 0.26 0.22 0.25 0.26 0.21 0.32 0.32	Jun vailable vailable vailable 0.26 0.25 0.26 0.27 0.27 0.31 0.38 0.23	Jul at this t at this t 0.25 0.24 0.25 0.27 0.26 0.20 0.35 0.24	Aug time time 0.24 0.22 0.25 0.25 0.30 0.30 0.24	0.23 0.21 0.23 0.23 0.20 0.28 0.24 0.20	0.21 0.17 0.20 0.19 0.16 0.21 0.22	0.13 0.13 0.13 0.13 0.11 0.15 0.11	0.09 0.08 0.09 0.07 0.06 0.08 0.08		\$ 120	150 2-	14.1	LiMass 560
Lat 64.84 61.08 57.8 33.44 32.96 34.14 32.45 34.76 34.27 36.07	Long -147.62 -149.73 -135.13 -85.081 -87.171 -87.362 -85.641 -90.722 -92.393 -93.357	454 1480 450 600 363 804 283 253 270 2365	CA and FL) arse for oth Station Name Fairbanks Alakka Rabbit Creek Alaska Hoonah Alaska Taldega Alabama Tuskegee Alabama Tuskegee Alabama Mariaman Arkamass Sheridan Arkamass Sheridan Arkamass	years of Data	Jan 0.07 0.08 0.06 0.08 0.06 0.07 0.06	Feb 0.13 0.09 0.12 0.13 0.07 0.12 0.10	0.18 0.13 0.17 0.17 0.13 0.19 0.15	0.24 0.20 0.24 0.24 0.18 0.08 0.21	May Una Una 0.26 0.22 0.25 0.26 0.21 0.32	Jun vailable vailable 0.26 0.25 0.26 0.27 0.27 0.31	Jul at this t at this t 0.25 0.24 0.25 0.27 0.26 0.20 0.35	Aug time time 0.24 0.22 0.25 0.25 0.25 0.30	0.23 0.21 0.23 0.23 0.20 0.28 0.24	0.21 0.17 0.20 0.19 0.16 0.21 0.22	0.13 0.13 0.13 0.13 0.11 0.15	0.09 0.08 0.09 0.07 0.06 0.08		3 120	190 30	14.1	

26

Water Use Calculations in WinSLAMM

WinSLAMM conducts a continuous water mass balance for every storm in the study period.

For rain barrels/tanks, the model fills the tanks during rains (up to the maximum amount of runoff from the roofs, or to the maximum available volume of the tank).

Between rains, the tank is drained according to the water demand rate. If the tank is almost full from a recent rain (and not enough time was available to use all of the water in the tank), excess water from the event would be discharged to the ground or rain gardens after the tank fills.

0.125 ft of storage is needed for use of 75% of the total annual runoff from these roofs for irrigation. With 945 ft 2 roofs, the total storage is therefore 118 ft 3 , which would require 25 typical rain barrels, way too many! However, a relatively small water tank (5 ft D and 6 ft H) can be used instead.

30

rain barrel/tank storage per house (ft ³)	percentage reduction in annual roof runoff	# of 35 gallon rain barrels	tank height size required if 5 ft D (ft)	tank height size required if 10 ft D (ft)
0	0	0	0	0
4.7	20	1	0.24	0.060
9.4	31	2	0.45	0.12
19	43	4	0.96	0.24
47	58	10	2.4	0.60
118	75	25	6.0	1.5
470	98	100	24	6.0
				22

31

Eliminate Div. Str. 336 & Assoc. Outfall

Green Solutions

Separate Approx. 50

Acres, Eliminate Div. Str. 099

Approx. 480 Acres o Distributed Storage

Separate Approx.

270 Acres, Eliminate Outfall 067

Provide Storm-

water Treatmer at 85th St.

Small Sewer

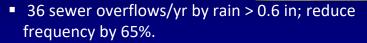
Rehabilitation

Throughout Basin

(Estimated Cost

\$18 Million)

Approx. 12,000' 12" to 36" Piping, Eliminate


14 Diversion

Kansas City's CSO Challenge

Combined sewer area: 58 mi²

Fully developed

Rainfall: 37 in./yr

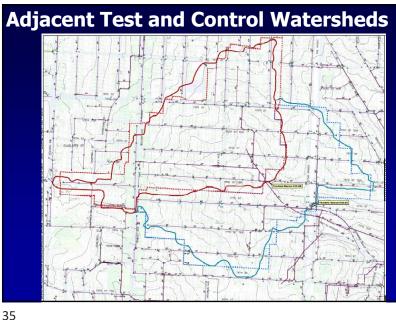
- 6.4 billion gal overflow/yr, reduce to 1.4 billion gal/yr
- Aging wastewater infrastructure
- Sewer backups
- Poor receiving-water quality

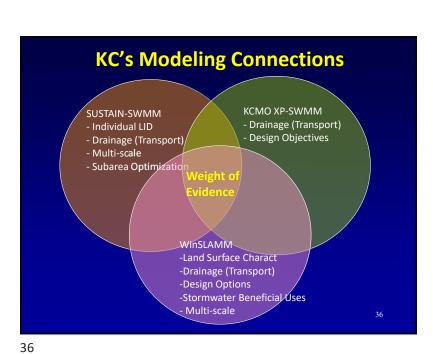
34

Kansas City's

Storage and

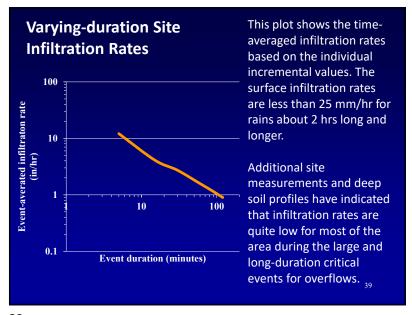
Infrastructure

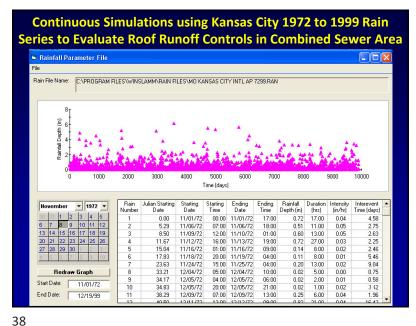

Green

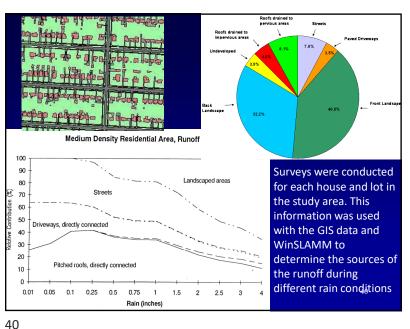

Revised Middle

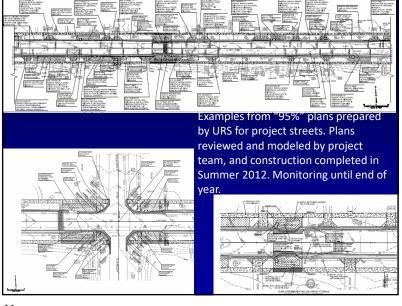
Blue River Plan

with Distributed

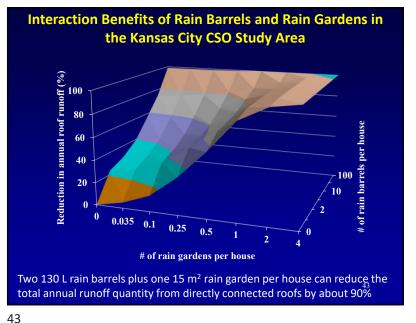



Major Land Use Components in Residential Portion of Study Area (% of area and % of total annual flow contributions)


	Roofs	Drive- ways	Side- walks	Park- ing	Streets	Land- scaped	Total
Directly connected	2 (6)	4 (9)	1 (3)	2 (5)	9 (21)		18 (44)
Disconnected	11 (7)	4 (3)	1 (1)	2 (3)	3 (21)		16 (11)
Landscaped	11(/)	- (3)	- (-)			66 (45)	
Total area	13 (13)	8 (12)	2 (4)	2 (5)	9 (21)	66 (45)	100


Based on KCMO GIS mapping and detailed site surveys, along with WinSLAMM calculations.

37



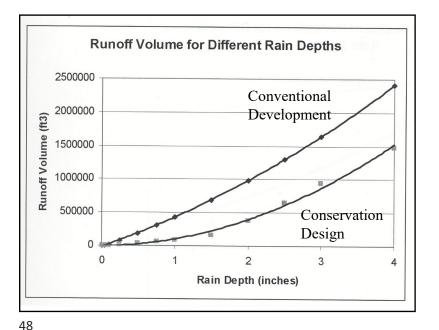
Interactions of Controls being Evaluated in **Kansas City**

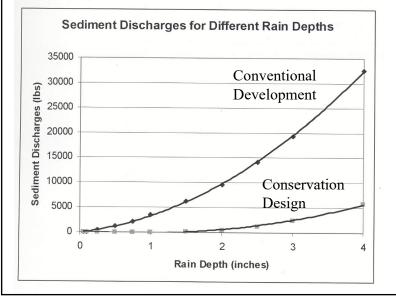
The curb-side biofilters are modeled as a cascading swale system where the site runoff is filtered and allowed to infiltrate. If the runoff volume is greater than the capacity of the biofilters, the excessive water is discharged into the combined sewer.

When evaluated together, cisterns treat the roof runoff first, the excess water is discharged to household rain gardens, then to the curbside biofilters. Continuous simulations drain the devices between events, depending on the interevent conditions and water demand.

42

Aerial Photo of Site under Construction (Google Earth)


- On-site bioretention swales
- Level spreaders
- Large regional swales
- Wet detention ponds
- Critical source area controls
- Pollution prevention (no Zn!)
- Buffers around sinkholes
- •Extensive trail system linking water features and open space



Conservation Design Elements for North Huntsville, AL, Industrial Park

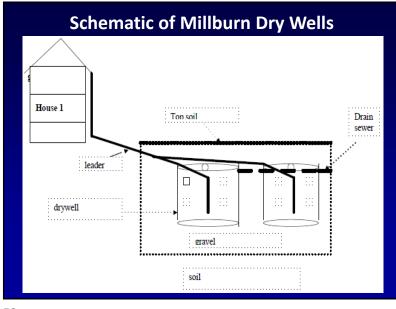
- Grass filtering and swale drainages
- Modified soils to protect groundwater
- Wet detention ponds
- Bioretention and site infiltration devices
- Critical source area controls at loading docks, etc.
- Pollution prevention through material selection (no exposed galvanized metal, for example) and no exposure of materials and products.
- Trail system throughout area.

46

_

Millburn, NJ

Dry well disposal of stormwater for groundwater recharge in conjunction with irrigation beneficial use


• For the past several years, the city of Millburn has required dry wells to infiltrate increased flows from newly developed areas.

• There are some underground water storage tanks now being installed to use stormwater for irrigation.

• Our recent project, supported by the Wet Weather Flow Research Program of the US EPA, is investigating the performance of this shallow groundwater recharge (including groundwater contamination potential) in conjunction with irrigation beneficial uses of the stormwater.

This major home restoration project included the installation of underground water storage tanks instead of dry wells. Homes in this neighborhood have summer water bills approaching \$1k/month for landscape irrigation, so the economic benefits of irrigation using storm.

52

Millburn To percentage		hip Lan	id Co	vers 1	for Stu	ıdy Si	tes (Area,	as a	a
Monitoring Location	Roofs	Driveways	Parking	Side walks	Street	Landscape	Paved Patio	Rear Walkway and Steps	Shed	Deck
8 South Beechcroft	9.3	6.7	0.0	1.3	10.6	70.2	1.3	0.1	0.0	0.5
11 Fox Hill	13.4	6.9	0.0	0.3	10.1	67.6	1.7	0.0	0.0	0.0
43 Browning Road S.H	14.2	5.9	0.0	0.7	13.2	63.2	2.9	0.0	0.0	0.0
1 Sinclair terrace	10.9	4.9	0.0	0.8	6.4	75.3	0.0	1.5	0.3	0.0
7 Fox Hill	14.3	6.3	0.0	2.2	10.6	64.4	2.2	0.0	0.0	0.0
9 Lancer	14.5	9.6	0.0	1.9	9.1	61.3	0.0	2.3	0.0	1.2
135 Tennyson Dr	5.7	5.2	4.2	1.4	17.0	66.5	0.0	0.0	0.0	0.0
79 Minnisink Rd	19.2	10.9	6.7	5.5	6.3	51.4	0.0	0.0	0.0	0.0
18 Slope Dr	15.4	11.7	5.8	0.0	24.9	42.1	0.0	0.0	0.0	0.0
139 Parsonage Hill Rd	13.3	6.6	7.9	0.8	16.9	54.5	0.0	0.0	0.0	0.0
Average	13.0	7.5	2.5	1.5	12.5	61.6	0.8	0.4	640	0.2

Dry Well Drainage Observations

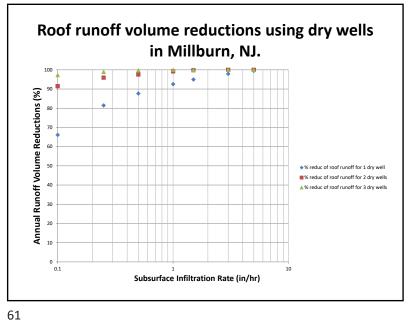
- Most of the dry wells were dry most of the time during the monitoring period (75 to 98% of the time)
- Standing water was observed at a few sites when sufficient time occurred to allow the water to reach a consistent minimum water level (about 3 ft deep); likely due to a high water table condition. The slow drainage rate may have been caused by saturated conditions from groundwater mounding
- Several sites experienced periodic slowly draining conditions, mainly in the spring, that could have been associated with SAR problems. The slow infiltration rates could be due to poor soils (with the clays resulting in SAR problems), or saturated soil conditions

55

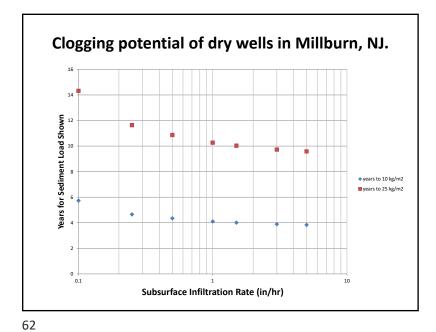
PVC Pipe pan lysimeters for dry wells (Shallow sampler next to bottom of dry bottom and deep sampler at least 2

SOIL

Soll


Gravel

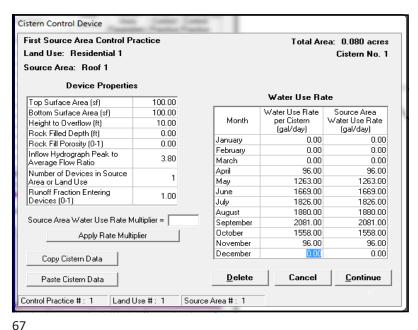
2" dia PVC pipe perfororated on the horizontal section and up to 2' on vertical


Monitored Water Quality below Dry Wells

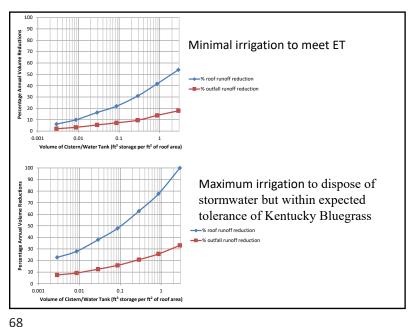
- Ten rains (0.1 to 9 inches in depth, including Hurricane Irene); median depth 0.15 inches.
- Three dry wells were monitored (along with one cistern).
- TN, NO₃, TP, COD, Cu, Pb, Zn, enterococci, *E. coli* for all events and pesticides/herbicides for one event.
- No significant differences in the paired sample concentrations for the dry wells.
- Bacteria and lead may exceed New Jersey groundwater disposal guidelines.

60

Irrigation Beneficial Uses of Stormwater								
	New Middlesex County New Jersey (in/day)	Ringwood New Jersey (in/day)	Average ET _o (in/day)					
January	0.02	0.01	0.015					
February	0.03	0.03	0.03					
March	0.09	0.12	0.105					
April	0.14	0.12	0.13					
May	0.17	0.14	0.155					
June	0.17	0.14	0.155					
July	0.18	0.13	0.155					
August	0.16	0.11	0.135					
September	0.14	0.10	0.12					
October	0.10	0.13	0.115					
November	0.09	0.11	0.10					
December	0.04	0.05	0.045					


Irrigation N	eed			-	-		nspi y, N.		n Re	quir	eme	nts
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average monthly rain (in/mo)	3.42	3.11	4.16	3.71	3.99	2.88	4.21	4.04	3.61	3.06	3.70	3.47
Average monthly ET (in/mo)	0.47	0.85	3.26	3.90	4.81	4.65	4.81	4.19	3.60	3.57	3.00	1.40
deficit for ET needs (in/mo)	0.00	0.00	0.00	0.19	0.81	1.77	0.60	0.15	0.00	0.51	0.00	0.00
Deficit ET needed (gal/day/house) 0.36 acres	0	0	0	63	256	577	188	47	0	160	0	0
	5 -											
	Huches per month											
	1 -											
	0 -	. Feb	Mar Ar	or May	lun lu	I Aug	Sep Oct	Nov F)ec			

For a "healthy" lawn, total water applied (including rain) is generally about 1" of water per week, or 4" per month. Excessive watering is harmful to plants, so indiscriminate overwatering is to be avoided.


Some plants can accommodate additional water. As an example, Kentucky Bluegrass, the most common lawn plant in the US, needs about 2.5 in/week, or more, during the heat of the summer, and should receive some moisture during the winter.

The following table therefore calculates supplemental irrigation for 0.5 inches per week in the dormant season and up to 2.5 inches per week in the hot months

65

3.11 2.00	4.16	3.71								
2.00			3.99	2.88	4.21	4.04	3.61	3.06	3.70	3.47
	4.00	4.00	8.00	8.00	10.00	10.00	10.00	8.00	4.00	2.00
0.00	0.00	0.29	4.01	5.12	5.79	5.96	6.39	4.94	0.30	0.00
0	0	96	1263	1669	1826	1880	2081	1558	96	0
	0	0 0	0 0 96	0 0 96 1263	0 0 96 1263 1669	0 0 96 1263 1669 1826	0 0 96 1263 1669 1826 1880	0 0 96 1263 1669 1826 1880 2081	0 0 96 1263 1669 1826 1880 2081 1558	0 0 96 1263 1669 1826 1880 2081 1558 96

Conclusions

- There are a large number of infiltration-based stormwater controls that can be applied to a variety of land uses to reduce the volume and rates of stormwater discharged to combined sewers.
- Beneficial uses of stormwater can also be a useful tool to reduce these discharges, while still conserving important resources.
- Continuous WinSLAMM simulations can calculate the benefits of these controls in many combinations for an area.