Stormwater Non-potable Beneficial Uses; a Review of International and United States Practices Leila Talebi¹ and Robert Pitt² ¹PhD Candidate, Department of Civil, Construction, and Environmental Engineering, University of Alabama, P.O. Box 870205, Tuscaloosa, AL 35487; e-mail: hatchio crimson, un.edu. ²Cudworth Professor, Urban Water Systems, Department of Civil, Construction, and Environmental Engineering, University of Alabama, P.O. Box 870205, Tuscaloosa, AL 35487; e-mail: rpitt@eng.ua.edu 1 3 ## **Objectives** - Study U.S.A and international practices of recycling of general urban stormwater runoff; - Illustrate the range of technologies being used in developing and in developed countries - Identify different components of stormwater systems, treatment and recycling systems the U.S.; - Identify each component's key design parameters, performance, current knowledge gaps, and obstacles to their implementation; - Review possible uses of the harvested runoff: The research focused primarily on non-potable water use (e.g. irrigation, non-potable in-house use) **Outlines** - Objectives - Review of Case Studies of Beneficial uses of Stormwater - Asia - Africa - Europe - Australia - North America - Regulations Restricting Beneficial uses of Stormwater - Household Water Use - Toilet flushing and irrigation 2 ### **Background** - This presentation is part of a current project supported by the Water Environment Research Foundation and the Wet Weather Flow Research Program of the US EPA - The project is investigating whether increased beneficial uses of runoff would be a more efficient use of the water instead of infiltrating into the shallow groundwaters. - This EPA project in Millburn includes monitoring the water levels in several dry wells and concurrent rainfall conditions. This information is also being used to calibrate WinSLAMM for detailed evaluations of alternative stormwater management options, including beneficial water uses (irrigation and groundwater recharge). # Representative Case Studies of Stormwater Beneficial Use Examined - Asia (Singapore, Japan, Thailand, Indonesia, Philippines, Bangladesh, China, South Korea, and India) - Africa (South Africa, Kenya, and Tanzania) - Europe (Germany and Ireland) - Australia (South Australia, Queensland, Victoria, and New South Wales) - North America (US Virgin Islands, Florida, Hawaii, Washington, New York, Maryland, California, Missouri, Oregon, Washington, D.C., and North Carolina) 5 | Place | Project
name | Stormwater
type | Study area | Storage capacity | Purposes | Benefits | Cost | Annual saving | Treatment | |---------|---|--|---|--|---|---|----------|------------------------------|---| | Germany | Berlin;
Belss-
Luedecke-
Strasse
building | Collecting
runoff from
roofs and
surface. | 7,000 m ² of
roofs & 4,200
m ² of streets,
parking
spaces | 160 m ³
cistern | toilet
flushing,
garden
watering | 2,430 m³ per
year saving
of potable
water | | | Treated in
several
stages | | Germany | Berlin-
Lankwitz | Collecting
runoff from
roofs and
surface. | 12,000 m ²
(63% roof,
35%
courtyards
and sidewalks
.12% roads) | 190m ³ | for toilet
flushing and
garden
watering | | | | Biological
treatment
and UV
disinfection | | Germany | Frankfurt
Airport | Rooftop
cisterns | 26,800 m ² | Six
tanks,
each is
100 m ³ | toilet
flushing,
irrigation,
cleaning the
air
conditioning
system | and save
about
100,000 m ³
of water per
year | \$63,000 | | | | Ireland | Queens
University
in Belfast | The roof
runoff is
collected
from roof, is
filtered, and
stored in an
underground
tank. | 3000m ² | | toilet
flushing | | | £13,000
For
installing | Filtering
prior to be
storing in
underground
tank | | Place | Project
name | Stormwater type | Study area
(catchment) | Storage
capacity | Purposes | Benefits | Cost | Annual saving | Treatment | |----------------|----------------------|--|--|--|--|---|-----------------------|---------------|--| | Singapore | Residential
area | Rooftop cisterns | 742 ha
(7,420,000
m ²) | | Non-potable | Saving 4% of
total water
used | \$0.74/m ³ | | | | Singapore | Changi
Airport | Runoff from the
runways and the
surrounding green
areas is diverted
to two
impounding
reservoirs | | | fire-fighting drills
and toilet flushing | Saving 28%-
33% of total
water used | | \$300,300 | Treating
before
reusing | | Japan | RyogokuKo
kugikan | Collecting runoff
from rooftop | 8,400 m ² | 1000 m ³
(undergro
und tank) | toilet flushing and air
conditioning | | | | Sedimenta
ion tank
prior to
storage
tank | | South
Korea | Star City
(Seoul) | Collecting runoff
from rooftop and
ground | 6.25 ha
(62,500 m ²) | 3000 m ³
(three
1000 m ³
tanks) | to irrigate gardens
and for flushing
public toilets | | US\$
450,000 | \$80,000 | | | India | Delhi | Rooftop and
surface runoff
harvesting | 113,000 m ² | | Potable and non-
potable | | \$1800 | | | | Tanzania | Makanya | Water is collected
from the sheet-
roof and stored in
above ground
plastic/RCC tanks | | Ranges
from 2 to
10 m ³ | Domestic purposes
or other productive
activities such as
small vegetable
garden. | Irrigation
potential
increases by
39%. | | | | 6 8 | Place | Project
name | Stormwater type | Study
area | Storage capacity | Purposes | Benefits | Cost | Annual saving | Treatment | |--------------------|---|--|---------------|------------------|---|--|----------------------|---------------|--| | South
Australia | Salisbury;
Parafield | Diverts
stormwater
from drainage
system to a
storage basin.
pumped to a
holding basin,
flows by gravity
to a reed bed
wetland | 1600 ha | | effluent is then
discharged to
an aquifer
storage area,
ensuring a
continuous
water supply
during dry
weather | nutrient and
other
pollutant
load
reductions
are 90% | Aus \$3.7
million | | Sedimentation
and wetland
treatment
system | | NSW | Black Beach
Foreshore
Park, Kiama | Stormwater is
collected,
treated and
pumped to
offline storage | | | to irrigate the
two parks | | \$175,000 | \$80,000 | Sand filter | | Florida | West Palm
Beach;
Renaissance | collects
stormwater
runoff from
different parts
of the
Convention
Center and
Pineapple Park
Neighborhood
to the Stub
Canal, and to a
settling basin | | | potable
drinking water | more than
1,140,000
m³ of treated
stormwater
is added to
the City's
water
supplies
each year | \$17.6
million | | Traditional bar
screens to
remove heavy
debris /
Alum and
polymers for tt
control of heav
metals, oils and
grease. | | Place | Project
name | Stormwater | Study area | Storage capacity | Purposes | Benefits | Treatment | |------------|-------------------------------------|---|--|--|--|---|--| | Hawaii | U.S.
National
Volcano
Park | Collecting
runoff from
roofs and
ground | 0.4 ha (4000 m²) rooftop & 2 ha (20000 m²) of ground catchment | 2 reinforced
tanks each
having 3,800 m ³
,18 redwood
tanks having 95
m ³ each | provide water for
1,000 workers
and residents of
the park and
10,000 visitors
per day | | | | Washington | Seattle,
King Street
Center | collect
stormwater
from the
building's
roof | 327,000 ft ²
(30380 m ²)
building
houses | three 5,400
gallon cisterns | and landscape
irrigation | saves an estimated
1.4 million gallons
of water per year,
meeting over %60
of the building's
estimated annual
water needs | Filtering
prior to being
pumped to
the building'
toilets or
irrigation
system
through a
separate
piping
system | | New York | Battery
Park City;
Solaire | Collecting
stormwater
from roof. | | 10,000 gallon
cistern | Cooling, laundry,
toilet flushing,
irrigation | Stormwater reuse system is sized for 95 m ³ /d (25,000 gpd) and provides approximately 30% of the total water use in the building. | Sand
filtration and
disinfection | 9 | Place | Project name | Study area | Storage
capacity | Purposes | Benefits | Cost | Annual
saving | Treatment | |----------|--|---|-----------------------------|--|---|--|------------------|---| | Missouri | Overland,
Alberici
Corporate
Headquarters | 42,200 ft ²
(3,920 m ²) | 30,900
gallon
cistern | toilet
flushing and
the
building's
cooling
tower | The stormwater reuse
system saves 500,000
gallons of water each
year, reducing potable
water demand by 70% | | | Filtering
and
chlorinating
prior to
reuse | | Oregon | Portland
University,
Stephen
Epler Hall | 21,400 ft ²
(1988 m ²)
roofs &
7,600 ft ²
(706 m ²)
turf and
landscape
plantings | 8700
gallons | first floor
restroom
toilets and
drip
irrigation of
3,000 ft ²
(279 m ²)of
native
landscaping | in addition to serving as
a demonstration project
for a supplementary
water source, the system
delays and filters
potentially polluted
quick run-off that would
otherwise flow through
the city's stormwater
pipes directly into the
Willamette River | \$71,800
initial,
\$310/yea
r | \$680 | stormwater
planters/
UV light | | Place | Project
name | Stormwater
type | Storage capacity | Purposes | Benefits | Cost | Treatment | |------------|---|---|------------------|--|---|---|---| | Maryland | Annapolis;
Philip
Merrill
Building | Collecting
runoff from
roof | | Washing hands,
laundry,
irrigation, and
fire suppression | The building's design allows for a 90% reduction in water use over an otherwise comparable conventional office building. | | Sand filters/
chlorination and
bioretention | | California | Santa
Monica;
SMURFF | Collect
runoff from
roofs and
surfaces | | Landscape
irrigation and
indoor
commercial
building use. | Provides
approximately
4% of the City of
Santa Monica's
daily water use | \$12 million
including the
distribution
system for the
recycled water | 5-stage treatment
train, consisting o
bar screens, flow
equalization, air
floatation,
microfiltration, an
UV disinfection | | California | Santa
Monica;
Robert
Redford
Building | Collect
runoff from
the building
roof | 3,000 gallons | Irrigation and flushing toilets. | The building
uses 60 percent
less water than a
standard
building of its
size, resulting in
an annual water
savings of over
60,000 gallons | | porous paving
system and
landscaping
planters | 10 # Heavily Urbanized Developing Countries In Water Stressed Areas - Most concerned with harvesting as much runoff as possible, with minimal concern related to water quality. - Not only is roof runoff harvested, but also runoff from all urban areas. Usually, all paved areas are used to harvest runoff, as maximum volumes are needed to augment the poor quality and poorly available local sources. - The water is stored in large ponds, or injected to shallow aquifers. These improve the water quality to some extent, greatly depending on the storage conditions. #### **Developing Countries With Large Rural Populations** - Most of the runoff harvesting schemes focus on collecting roof runoff for storage in tanks near homes. - The water is used for all domestic purposes and for irrigation of food subsistence crops during dry weather. - The storage tanks are therefore relatively large to provide seasonal storage. 13 #### The U.S. - Many of the U.S. stormwater harvesting projects are either part of a LEED* certified project, and/or to help reduce stormwater discharges to combined sewer systems. - The collected water is not used for potable uses, but mostly for irrigation uses, and sometimes for toilet flushing or for fire suppression. # **Developed Countries With Large Urban Populations** in Water Stressed Areas - Runoff harvesting has long been used to augment the water supplies. - In most cases, the runoff is collected from roofs and stored in large tanks adjacent to buildings where the water is used for non-potable uses. - In some rural cases, the water is used for all domestic water uses. In large development water harvesting projects, runoff is collected from all areas and undergoes some pretreatment before storage in large (usually underground) storage tanks. - The water then undergoes very sophisticated water treatment before use. In many cases, this highly treated harvested runoff is still restricted to non-potable uses. 14 ### **Regulations Restricting Stormwater Beneficial Uses** | | | Coliform Bacteria | Chlorine | pH | Turbidity | Ammonia | Aluminum | Nitrate
/Nitrite | |-----------------------------------|--|--|--|---------|-----------------|-----------|--------------|-------------------------| | WHO | Roof water
harvesting | E. coli. <10 cfu/100
mL | >0.2-0.5 and <5 mg/L | 6.5-8.5 | Not
relevant | <1.5 mg/L | Not relevant | Not relevant | | | Surface
Runoff | E. coli.<10 cfu/100
mL | >0.2-0.5 and <5 mg/L | 6.5-8.5 | <15 NTU | <1.5 mg/L | <0.2 mg/L | <50 mg/L and
<3 mg/L | | | Sand dams | E. coli.<10 cfu/100
mL | >0.2-0.5 and <5 mg/L | 6.5-8.5 | <5 NTU | <1.5 mg/L | <0.2 mg/L | <50 mg/L and
<3 mg/L | | New South
Wales
(Australia) | Level 1 | <1 cfu/100 mL | 1 mg/L Cl ₂ residual
after 30 minutes, or
equivalent level
of pathogen reduction | 6.5–8.5 | ≤2 NTU | | | | | | Level 2 | <10 cfu/100 mL | 1 mg/L Cl ₂ residual
after 30 minutes, or
equivalent level of
pathogen reduction | 6.5–8.5 | ≤2 NTU | | | | | | Level 3 | <1000 cfu/100 mL | | 6.5-8.5 | | | | | | Berkeley,
CA | Non-
potable
indoor/outd
oor uses | Total coliforms
<500 cfu per 100 mL
Fecal coliforms
<500 cfu per 100 mL | | | | | | | #### **Regulations Restricting Stormwater Beneficial Uses** | | | Coliform Bacteria | Chlorine | pН | Turbidity | |--------------|-------------------------|--|----------|-----|-------------| | Texas (2006) | Non-potable indoor uses | Total coliforms
<500 cfu per 100
mL
Fecal coliforms
<500 cfu per 100
mL | | | | | UK (2008) | Non-potable indoor uses | Total coliforms
10/100 mL | <2 mg/L | 6–8 | ≤ 10
NTU | ✓ Bacteria standards are common, with *E. coli* limits ranging from 1 count per 100 mL for non-potable uses with public access to 1,000 counts per 100 mL for controlled access. ✓ Chlorine residuals imply chlorination as a disinfectant, usually with a concurrent turbidity limit to allow more efficient disinfection. 17 # The Urban Water Budget and Potential for Beneficial Stormwater Use in U.S. Residential Areas • Two working adults and one child, in the U.S. southeast, where the rainfall averages about 50 inches per year: | bathing | 42% | |-------------------------------------|-----| | laundry | 11% | | kitchen sink | 15% | | dishwasher | 8% | | bath sinks | 12% | | toilet flushing | 12% | | | | # Summary of Reported Household Water Use and Amounts used for Toilet Flushing | Location | Per Capita Domestic Water
Use per Day
(L/c/d and date) | Toilet Usage of Indoor Water
Supply (% of total supply
and L/c/day) | |-----------------|--|---| | Germany | 126 (2004) | 30% (38 L/c/day) | | Ireland | 148 (2006) | 22% (33) | | Poland | 110 (2003) (Gdansk) | n/a | | Denmark | 131 (2005) | 22% (29) | | Finland | 120 to 150 (2004) | 14% (19) | | The Netherlands | 127 (2006) | 29% (37) | | Austria | 125 to 135 (2007) | 22% (29) | | Hong Kong | 230 (2004) | n/a | | Nigeria | 30 to 67 (cooking, drinking, bathing and washing only) | n/a | | | (2002) | | | Israel | 300 (1998) | n/a | | Millburn, NJ | 240 (2005) | n/a | | Kansas City, MO | 393 (2005) | n/a | 18 #### **Stormwater Beneficial Uses for a Typical House** - The estimated roof runoff for a typical 2,000 ft², 1- ½ level, house (roof area of about 1,300 ft²) would be about 40,000 gallons per year, for this area having about 50 inches of rain a year. - The total water use for this household is about 100,000 gallons per year, with the amount used for toilet flushing being about 12,000 gallons, with another 3,000 gallons used for landscaping irrigation. - For this example, the roof runoff would supply almost three times the amount of water needed for toilet flushing and landscape irrigation. #### **Conclusions** - The range of approaches is vast, with some situations simply concerned with capturing any available runoff possible to augment scarce local supplies, while other examples are in water-rich areas and the runoff is being harvested for beneficial uses to conserve already abundant water supplies. - The methods used for storage and treatment are also seen to vary greatly, from local clay jars to vast underground reservoirs, and with many recharging aquifers for later withdrawal. - The uses of the harvested runoff also vary from irrigation and toilet flushing only to all domestic water uses. 21 ### **Acknowledgments** - U.S. Environmental Protection Agency (EPA) - Wet Weather Flow Research Program - PARS Environmental, Inc. Millburn, NJ - Department of Civil, Construction, and Environmental Engineering, University of Alabama - The city of Millburn, NJ. ### **Conclusions (cont.)** - Beneficial uses of stormwater are mainly for purposes having low potentials for human contact, such as irrigation; - Treatment also is seen to vary from virtually none to very sophisticated water treatment systems. Treatment is generally based on general stormwater pollution control techniques, however, advanced techniques together with disinfection are used if there is a higher potential for human contact; - Beneficial uses of stormwater is not effectively regulated at this time. Given the potential for beneficial uses of stormwater in many areas of the U.S., higher priority should be given to development of specific guidelines. 22 #### Selected References - Fujita, S. "Restoration of polluted urban watercourses in Tokyo for community use." Sustaining Urban Water Resources in the 21st Century. Proceedings of an Engineering Foundation Conference. September 7 12, 1997. Malmo, Sweden. ASCE/Engineering Foundation. New York. 1998 - Geldof, G.. "The blue transformation in the Netherlands." Presented at the Engineering Foundation/ASCE sponsored symposium on Sustaining Urban Water Resources in the 2st Century, Malmo, Sweden, Edited by A.C. Rowney, P. Stahre, and L.A. Roesner. September 7 12, 1997. ASCE/Engineering Foundation. New York. 1998. - Göransson, C. "Aestheric aspects of stormwater management in an urban environment." Presented at the Engineering Foundation/ASCE sponsored symposium on Sustaining Urban Water Resources in the zi^{ac} Century, Malmo, Sweden, Edited by A.C. Rowney, P. Stahre, and L.A Roesner. September 7 - 12, 1997. ASCE/Engineering Foundation. New York. 1998. - Heaney, J.P., L. Wright, D. Sample, R. Pitt, R. Field, na dC-Y Fan. "innovative wet-weather flow collection/control/treatment systems for newly urbanizing areas in the 21st century." Presented at the Engineering Foundation/ASCE sponsored symposium on Sustaining Urban Water Resources in the 21st Century, Malmo, Sweden, Edited by A.C. Rowney, P. Stahre, and L.A. Roesner. September 7 12, 1997. ASCE/Engineering Foundation. New York. 1908. - Hittman Associates. The beneficial use of stormwater. Report No. 1103/DNKo8/68, NTIS No. PB 195160, U.S. Environmental Protection Agency Washington, D. C., 1968. Mallory, C.W. The Beneficial Use of Storm Water. EPA-R2-73-139, U.S. Environmental Protection Agency. Washington, D. C., January 1973. - Mallory, C.W. The Beneficial Use of Storm Water. EPA-R2-73-139. U.S. Environmental Protection Agency. Washington, D. C., January 197 Metcalf & Eddy. Wastewater Engineering: Treatment, Disposal, and Reuse. 3rd edition. McGraw-Hill, New York. 1991 - ENSR. 1998. Bare Hill Pond Water Quality and Aquatic Plant Evaluation. ENSR Northborough, - MA. - Erwin Nolde (2007), Possibilities of rainwater utilisation in densely populated areas including precipitation runoffs from traffic surfaces Desalination 215 (2007) 1-11 - J. S. Pachpute · S. D. Tumbo · H. Sally · M. L. Mul (2009), 'Sustainability of Rainwater Harvesting Systems in Rural Catchment of Sub-Saharan Africa', Water Resoures Management (2009) 23:2815–2839 - DOI 10.1007/\$11269-009-9411-8 - Zhe Li, Fergal Boyle, Anthony Reynolds, (2010) Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 260 (2010) 1-8 - Tredoux, G., Murray, E.C. and Cave, I.C. (2002), 'Infiltration basins and other recharge systems in Southern Africa', In: Management of Aquife Recharge and Subsurface Storage Seminar. Making Better use of Our Largest Reservoir, International Association of Hydrogeologists, Wageningen, the Netherlands. - Turner, C. 2005, A First Year Evaluation of the Energy and Water Conservation of Epler Hall:Direct and Societal Savings, final report. Available at: <a href="http://www.pdx.edu/sites/wwww.pdx.edu/sites/www.pdx.edu/sites/www.pdx.edu/sites/www.pdx.edu/s - Whitman and Howard. 1987. Diagnostic/Feasibility Study Bare Hill Pond. Harvard, MA. Prepared by Whitman and Howard, Wellesly, MA. Thank You Questions?