# **Decision Analysis**

Urban Water Systems
Laith Alfaqih
Jan. 30 2008

### **Decision Analysis**

- Developing decisions is a difficult task to achieve due to the errors and uncertainty in information.
- This results in projects failure to achieve their goals and objectives (Ewusi-Mensah, 2003)
- There is an increased awareness of the importance of dealing with both risk and uncertainty (Schutze et al., 2004)

# **Decision Analysis**

Translates the stakeholders' objectives into their relative worth to the decision maker or other interested parties (Pitt, 2007)

# **Uncertainty & Risk**

- Uncertainty: A state of having limited knowledge about an action or state of future outcome
- Risk: A state of uncertainty where desired outcomes may have an undesired effect and impact

(Douglas Hubbard, 2007)

### **Utility Theory**

- It is a successful method in assisting decision makers to deal with uncertainty and risk in information during decision analysis.
- > Using the utility theory leads to high levels of confidence when deciding on systems.
- Utility theory is used to quantify the values of decision makers for consequences.

### Example

- Best way to understand decision analysis and utility theory is through examples
- ➤ Going back to the E.coli example

# Example

- > Identify attributes of concern
  - Public health
  - Economic
  - Environmental
  - Resources
  - Cultural...etc
- ➤ Identify alternatives for implementation
- Each one of these attributes has a range of values from best to worst for each attribute

#### Alternatives

- > Incineration
- Composting
- > Filter Strip

|              |   | Public Health      | Envi | ronment 8 | Ecology  | Economic |
|--------------|---|--------------------|------|-----------|----------|----------|
| Alternatives |   | Reducing<br>E.coli | Р    | N         | Sediment | Cost     |
| Incineration |   | 100%               | 100% | 100%      | 100%     | 10.0     |
| Composting   | 2 | 100%               | 90%  | 80%       | 60%      | -24.0    |
| Filter Strip | 3 | 55%                | 85%  | NA        | 60%      | 37.5     |

|               |      | Units  | Best | Worst |
|---------------|------|--------|------|-------|
| Public Health |      | %      | 100  | 55    |
| Environment & | Р    | %      | 100  | 85    |
| Ecology       | N    | %      | 100  | 80    |
|               | Sed  | %      | 100  | 60    |
| Economic      | Cost | \$/ton | -24  | 37.5  |





### Tradeoff Analysis

Tradeoff: Exchange that occurs as a compromise

Example: Workout 3 times a week and reduce your health insurance by \$5 a month or do not work out and increase your insurance by \$5 a month

### **Attributes Ranking**

- > After utility curves are developed, the attributes are ranked.
- > In our example:
  - 1. Public Health
  - 2. Cost
  - 3. Environment and Ecology

# **Tradeoff Analysis**

- There are two possible situations for a pair of attributes "worst, best" compared to "?, worst"
- Assume that you are indifferent to both situations
- The common unit of comparison between the attributes is \$

> The sets of comparisons are as follows PH, Cost =  $(55\%, -24) = \sim (75\%, 37.5)$  Cost, P =  $(37.5, 100\%) = \sim (6.75, 90\%)$  .....and so on

### **Using Utility Function**

U(x1, x2, x3, x4, x5)=Sigma KiVi(xi)

Where: x1: PH, x2:P, x3:N, x4:N, x5:\$ k1:PH, k2:P, k3:N, k4:Sed, k5:\$

Solving for k values (k5/k1)=U1(75%) = 0.48 k2/k5=U5(\$6.75) = 0.5 k3/k5=U5(\$6.75) = 0.5....etc > Solving for the ks k1=0.44 k2=0.11 k3=0.11 k4=0.11 k5=0.22

# Alternatives' Utility Values

| Alternatives | Public Health | Cost | Р    | N    | Sed  |
|--------------|---------------|------|------|------|------|
|              |               |      |      |      |      |
| Incineration | 1.00          | 0.48 | 1.00 | 1.00 | 1.00 |
|              |               |      |      |      |      |
| Composting   | 1.00          | 1.00 | 0.75 | 0.49 | 0.00 |
|              |               |      |      |      |      |
| Filter Strip | 0.00          | 0.00 | 0.55 |      | 0.00 |
|              |               |      |      |      |      |
|              |               |      |      |      |      |

Each attribute's utility score is multiplied by its relevant k value. For example:
 The relevant utility value for public health for incineration is 1.0 and its k value is 0.44 then the value is (1\*0.44 = 0.44)
 All of these values for each alternative are added together and will have a score for that alternative

| Alternatives | Score | Rank |
|--------------|-------|------|
| Incineration | 0.88  | 1    |
| Composting   | 0.80  | 2    |
|              |       |      |
| Filter Strip | 0.06  | 3    |

For further information about decision making see Pitt and Voorhees, 2007 (Using Decision Analyses to Select an Urban Runoff Control Program)

Also Keeney and Raiffa, 1976 (Decisions with Multiple Objectives)